NASA GSFC Data Systems Technology Java Style Guide, Version 1.0 DSTL-97-002

NASA GSFC
Data Systems Technology

Java™ Style Guide

July 1997
Sylvia B. Sheppard Date
Head, Software and Automations Systems Branch
Code 522
Julia D. Breed Date
Head, Applied Technology Development Section
Code 522.1

Goddard Space Flight Center
Greenbelt, Maryland

NASA GSFC Data Systems Technology Java Style Guide, Version 1.0 DSTL-97-002

PREFACE

This document describes recommended practices and styles for programmers using the Java
language in the Software and Automation Systems Branch, Code 522. Guidelines are based on
generally recommended software engineering techniques, industry resources, and local convention.

This document is under the configuration management of the Software and Automation Systems
Branch Configuration Control Board (CCB). Changes to this document shall be made by
Documentation Change Notice (DCN), reflected in text by change bars, or by complete revision.

Requests for copies of this document, along with questions and proposed changes, should be
addressed to:

Technology Support Office

Software and Automation Systems Branch, Code 522
Goddard Space Flight Center

Greenbelt, Maryland 20771

Or see our Web site at:
http://groucho.gsfc.nasa.gov/Code_520/Code_522/Documents/

Java and other Java-based names are trademarks of Sun Microsystems, Inc.

This document assumes that the reader is familiar with the Java language and understands basic
object-oriented concepts.

While every precaution has been taken in the preparation of this document, the authors assume no
responsibility for errors or omissions.

iii/iv

NASA GSFC Data Systems Technology Java Style Guide, Version 1.0 DSTL-97-002

CHANGE INFORMATION PAGE

List of Effective Pages

Page Number Issue
Title Original
Signature Page Original
iii through x Original
1-1and 1-2 Original
2-1 and 2-11 Original
3-1 through 3-9 Original
4-1 through 4-3 Original
5-1 Original
-2 and I-2 Original

Document History

Issue Date DCN No.
Original July 1997 N/A

vivi

NASA GSFC Data Systems Technology Java Style Guide, Version 1.0 DSTL-97-002

ACKNOWLEDGMENTS

The following developers of the guidelines gave generously of their time and expertise during the
process of development:

Troy Ames
Julia Breed
Carl Hostetter
Stephen Jonke
Jeremy Jones
Lisa Kane
Karl Mueller
Gregory Shirah
Mark Stirling

Robert Wiegand

NASA GSFC Data Systems Technology Java Style Guide, Version 1.0 DSTL-97-002

TABLE OF CONTENTS

Section 1: Introduction

L PUIPOSE . e 1-1
A A § T 11=] o (o1 OO USRS PPPRR 1-1
1.3 DOCUMENT FOIMAT ... oot e et e e et e e et e e e et e e e eata e e eataeeeeetaaaeennnanns 1-1
1.4 REIEVANT DOCUMENTES.....coitiiii ittt ettt e e e e e e e ettt e s e e e e eeesab e eeeesesestaasaeeeeesersrannnnns 1-2

Section 2: Consistent Formatting

A R VA o T (I o 1= (ol S TP URPP TP 2-1
2.1.1 (S F= T o] S I o 1= TSP PR 2-1

2.1.2] o1 163 [o [0 F TP PP TR 2-2

2.1.3 [[g o [T 0 = 1 A o] o H PP PRSPPI 2-3

2.1.4 CONTINUATION LLINES..uuuiiiiiiiieeeice ettt e e et e e e e e e e e e e e e e e e e e ee bt e e 2-3

2.1.5 Braces and ParEntheSES..........cuuuiiiiiieieeiiee ettt 2-4

A O0] 1 011 011 o | £SO P P RRUPPON 2-6
2.2.1 Documentation COMMENTSuuuiiiii e e e e e e e e bt 2-6

2.2.2 (Of0To [O¢0] 110 =1 o] £ URT TSP PPPPORRRRPN 2-7

2.2.2.1 Code CommENT FOrMALScovvviiiiieiiieieiece e 2-7

2.2.2.2 General GUIAEIINESoiiiiiiiieiicee et ee b 2-8

2.3 Standard Naming CONVENTIONSoouuiiiiiiiiae ettt e e e e e s e s ba e e e e e e e e e e e anneeeas 2-9
2.3.1 NAME FOFMIALSe et e et e et e e et e e e et e e e et e e eeraaans 2-9

2.3.2 NAME CONVENTIONScciiiiiiii ettt e e e e e e e e et e e e e e e e esb e e e eeeeesbaaaanns 2-9

2.3.3 S a10] o A\ F= T 0 41T OO PO PPRR 2-10

2.3.4 General Guidelines for Variable NameS...........couviiiiiiiiiiiiiiiieeeeeeeee e 2-10

2.35 Package Naming CONVENTIONS.........ooiiiiiiiiiiii et e e e 2-10

A I | (=Y = [TS PTRORP PR 2-11

Section 3: File Organization

TN N o Tod = To =1 T PRPP TP 3-1
3.2 README Fl ..ottt e 3-1
TR T ST [o o] (oo TP UPP TP 3-1
3.4 OFder OF CONTENTSeiiiiiiiiie ettt e e et e e e st e e e sttt e e e b b e e e e asbe e aanbe e e e enneas 3-2
3.5 ClasSeS ANA INTEITACESeiiiiiiiiie ittt e s b e s e b s e e e nneas 3-2
I G I |V [1 o To T OO P P PTPPPP PP 3-3
3.7 Tagged ParagraphiS.... .. e e e eee s 3-4
3.8 SAMPIE SOUFCE FIIE ..ottt e e e e et e e e e e e e e st b nae e e e sannbeeeeeas 3-5
Section 4: Use of Language Constructs

o R 1 01 o] o TP 4-1
N Y/ =1 1 g ToTe PP PP P TUPPPP PP 4-1
4.3 VAKTADIES. ... ares 4-1
N I = - |1 PP PO PP P OUPPPPPP 4-1
4.5 Type CONVErSIONS QN0 CASTSuuiiiiiiiiiiiiiiii ettt e e et e e e e e e e s anbb e e e e e e e e s e e anbbebeeaaeeesnbeeeeeas 4-4
4.6 Operators aNd EXPIESSIONSuieiiiiiaiiiiiiiie et e e e e et et e e e e e e et ebe e et e e e s e s anbbeeeeeaaesaaanbbeseeeaeeaanreneeeas 4-2
4.7 Control FIOW STatemMENTS........cooiiiiiiiiiiii ettt e s e e et e e nre e e e e nneas 4-3
S B I 0] €= (6 LT PO TP PSP PP PTPPPP PP 4-3

Section 5: Tips and Techniques

TN R O F- 11T R PPUOORRR RPN 5-1
LT I o] =T Vo [PPRUOOSRR RPN 5-1
RS T =] o =L o] [XY TSSO PRPP TP 5-1
N o= (0] 4 1= g (o= TR PPPUUORRR PPN 5-2

NASA GSFC Data Systems Technology Java Style Guide, Version 1.0 DSTL-97-002

NASA GSFC Data Systems Technology Java Style Guide, Version 1.0 DSTL-97-002

EXAMPLE CODE

A I - T Ofo o [l o= T =T =T o 1 0T TP PPPRP 2-1
2.1.4a Strings of ConditioNal OPEIratorsSccui it e e e e e snreee s 2-3
2.1.4b Y/ 1=3 g ToTo I @2 || EO PR PUURURT 2-3
2.1.5a Braces-Stand-Along METNO............eiiiiiii e 2-4
2.1.5b Braces Improve Readabilityc..ouiiiiiiiiii s 2-4
2.1.5cNO0 Braces - DiffiCUIT 10 REA.cooiiiiiieiieee et e e 2-4
2.1.5d USE OF BIACES ..ceiiiiiiiiiie ittt ettt e e oo ettt et e e e e e s e a b bbbt e e e e e e e e s bbb be e e e e annbbbeeeaaaeaean 2-5
2.1.5e (DT80 010 01V =0 Te 1Y TP PPTPUOT PR 2-5
2.2a DocUMENT COMIMENT. ... 2-6
2.2b BOXEA COMIMENT ...ttt e e e oot e bttt e e e e e s s s bbbt e e e e e e e e e annbbbeeeeaaeeesanneaaaaaaan 2-7
2.2c ST A Lo g IST=T o T = U (o] PP 2-7
2.2d BIOCK COMMIBNT ...ttt e e e e e ettt et e e e e e e e st bbb e e e e e e e e e areeeaaaeaean 2-7
2.2e IN-1INE COMMIEBNTS ...ttt e ettt e e e e e e e e s e bbb et e e e e e e s e s annbbeeeeeeasannbeeeeeas 2-7
2.2f Block Comments vS. IN-1INe COMMIENT.........ooiiiiiiiiiiiii e 2-8
2.29 CommMENT INAENTATIONeiiiiii et e e e e e e s et e e e e e e e e sbeaeeeas 2-8
4.7a Embedded AsSignment AITErNAtiVES.uiiiiiiiiii e 4-2
4.8a Complex ConditioNal EXPIreSSIONooiiiiiiiiiiieiaa ettt a e e e e e e e e s ennbeeees 4-3

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

SECTION 1
INTRODUCTION

1.1 PURPOSE
This document describes the style recommended by the Data Systems Technology Division for
writing Java programs, where the goals are to produce code that is:
= Reliable
= Maintainable
- Organized
- Easy to understand

- Well documented

1.2 AUDIENCE
This document was written specifically for programmers in the Data Systems Technology Division

environment. This document assumes a working knowledge of Java, and focuses on describing good
practices that will enhance the quality of the Java code.

1.3 DOCUMENT FORMAT

The following meanings are assigned to the formats included in this document:

Example code is included in shaded boxes.

Plain boxes are used to enclose standard formats and other related information.

Italics are used to differentiate the variable portion to be completed by the programmer from the
standard format that should appear verbatim.

Italics are also used to visually separate brief (one-line) examples.

Bold text is used simply to highlight key words or phrases for the reader.

11

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

14 RELEVANT DOCUMENTS

[1] The Software and Automation Systems Branch C++ Style Guide, Version 2.0, DSTL -96-011
http://groucho.gsfc.nasa.gov/Code_520/Code_522/Documents/Cplus/

[2] The Java Programming Language, Arnold and Gosling
Addison-Wesley, 1996

[3] The Java Language Specification, Version 1.0
http://www.javasoft.com:81/docs/language_specification/

[4] The JavaBeans 1.0 API Specification
http://splash.javasoft.com/beans/spec.html

[5] Draft Java Coding Standard, Lea
http://g.oswego.edu/dl/html/javaCodingStd.html

[6] Java Optimization
http://www.cs.cmu.edu/~jch/java/optimization.html

1-2

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

SECTION 2
CONSISTENT FORMATTING

The guidelines in this section are written to improve the consistency of formatting of Java
programming style within the Branch. This will ease the job of maintenance, and will also make it
easier for a programmer to transfer from one project to another.

2.1 WHITE SPACE

Adding white space in the form of blank lines, spaces, and indentation significantly improves the
readability of code.

21.1 BLANK LINES

There should be at least one blank line between methods. Within a method careful use of blank
lines between code "paragraphs" can greatly enhance readability by making the logical structure of a
sequence of lines more obvious. Using blank lines to create paragraphs in code or comments can
make programs more understandable. The following example illustrates how the use of blank lines
helps break up lines of text into meaningful portions.

Example 2.1.1a - Code Paragraphing

public void joi nGoupSucceeded(Joi nG oupSuccessEvent e)
Group g = get Pendi ngG oup(e. get G oupNane());
if (g'!=null)
{

/1 Renmove g fromthe pending I|ist
f Pendi ngG oupTabl e. renmove(g. get Nane());

// Add the group to the joined group |ist
fJoi nedG oupTabl e. put (g. get Nane(), g);

}

/1 Notify listeners of the event:

Vector listeners = null;
synchroni zed(this)

|isteners = (Vector) fJoinGroupSuccessListeners. clone();

for (int i =0; i < |listeners.size(); ++i)

((Joi nGroupSuccessLi stener) listeners.elenentAt(i)).joi nGoupSucceeded(e);

However, overuse of blank lines can defeat the purpose of grouping and can actually reduce
readability. Therefore, a single blank line should be used to separate sections of code within a
method.

2-1

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

2.1.2 SPACING
Appropriate spacing enhances the readability of lexical elements.

a. Do not put space around the primary operators: . and []:
obj . m ali]

b. Do not put a space before parentheses following method names.
exp(2, Xx)

c. Do not put spaces between unary operators and their operands:
I'p -b ++i -n

d. Casts are the only exception. Do put a space between a cast and its operand:
(C oneabl e) obj ect

e. Always put spaces around assignment operators:
cl = c2

f. Always put space around conditional operators:
z =(a>hb) ?2a: b;

g. Commas should have one space (or a new line) after them:
streamread(buffer, 0, 255)

h. Semicolons should have one space (or a new line) after them:
for (i =0; i < n; ++i)

i. For other operators, generally put one space on either side of the operator:
X +y a<bé&&b<c

2-2

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

2.1.3 INDENTATION

Indentation should be used to show the logical structure of code. Research has shown that four
spaces are the optimum indent for readability and maintainability. Tabs should be used for
indentation, and it is recommended that they be set to four spaces for displays. Align groups of
variable declarations (using tabs) so that the first letter of each variable name is in the same column.

2.1.4 CONTINUATION LINES
Line length should not exceed 79 characters. Statements that continue over more than one line
should be indented each line after the first line with two additional tabs. This will differentiate the

continuation portion of the statement from the encapsulated body of a block.

a. Strings of conditional operators that will not fit on one line should be divided into separate
lines, breaking before the logical operators in the following format:

Example 2.1.4a - Strings of Conditional Operators

if (listenerd ass.islnstance(listener)
&& argunents.length ==
&& ar gunent s[0] . get Nanme() . equal s(event C assNane))

{
/1 Wap event object in array
oj ect[] invokeArgs = new hject[1];
i nvokeArgs[0] = this;
/1 1nvoke the method
met hod. i nvoke(li stener, invokeArgs);
}

b. Method calls and declarations that continue over more than one line should be presented one
argument per line, followed by a comma in the following format. One benefit of this is that an
in-line comment can be added after each argument to describe its purpose. If argument
names are short, and their meanings are simple, they can be combined on one line at the
programmer’'s discretion.

Example 2.1.4b - Method Call

Joi nGroupSuccessEvent successEvent = new Joi nG oupSuccessEvent (
this, /1 source workpl ace instance
get Nane(), /'l source nane

nmenber . get Name(), /1 destination menber nane
group. get Nane()) ; /] destination group name

c. A method definition's return type should go on the same line as the method name.

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

215 BRACES AND PARENTHESES

Compound statements, also known as blocks, are lists of statements enclosed in braces. The
recommended brace style is the Braces-Stand-Alone method. Braces should be placed on separate
lines and aligned with their contents indented one tab which is four spaces. This style allows for
easier pairing of the braces.

Example 2.1.5a - Braces-Stand-Alone Method

int total = 0O;

for (int i = b; i < elenents; i++)
total +=i;
sunfi] = total;

a. Although Java does not require braces around single statements, braces should be used for
single statement blocks to help improve the readability and maintainability of the code. If
braces are not used in single statement blocks the risk of maintenance errors is increased.

Maintenance programmers may add a statement within the block, but may forget to add
braces.

Example 2.1.5b - Braces Improve Readability

for (int i = 0; i < editMenu.getltenCount(); ++i)

if (editMenu.getlten(i).getlLabel ().equals(“Settings...")
&& fUser.isAdmnistrator())

edi t Menu. renove(i);

Example 2.1.5c¢ - No Braces - Difficult to Read

for (int i =0; i < editMenu.getltenCount(); ++i)
if (editMenu.getlten(i).getlLabel ().equals(“Settings...")
&& fUser.isAdm nistrator())
edi t Menu. renove(i);

2-4

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

b. Because the else part of an if-else statement is optional, omitting the ‘else’ from a nested
if sequence can result in ambiguity. Therefore, always use braces to avoid confusion and
to make certain that the code compiles the way it was intended. In the following example,
(2.1.5d) the same code is shown both with and without braces. The first example will
produce the results desired. The second example will not produce the results desired
because the ‘else’ will be paired with the second ‘if’ instead of the first.

Example 2.1.5d - Use of Braces

recommended:

i f (fConnected)
{ for (int i =0; i < n; i++)
if (s[i] > 0)
f Counts. add(s[i]);
}
el se /1 CORRECT -- braces force proper association

Systemout.println(“Error: not connected.”);

not recommended:

i f (fConnected)

for (int i =0; i < n; i++4)
if (s[i] > 0)
f Counts. add(s[i]);
el se /1 WRONG -- the conpiler will match to cl osest else-less if

Systemout.println(“Error: not connected.”);

c. If a loop statement has a dummy body, opening and closing brackets should be added on
separate lines. It is good practice to add a comment stating that the dummy body is
deliberate.

Example 2.1.5e - Dummy Body

whi l e (fTabl e. | oadEl enent ())
/1 dumry body

d. Insert a space between reserved words and their opening parentheses.

2.2 COMMENTS

Comments in the code can provide information that a person could not discern simply by reading the
code. In addition to the standard required comment blocks (see Section 4), comments can be added at

2-5

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

many different levels. Comments can be written in several styles depending on their purpose and
length. Use comments to add information for the reader or to highlight sections of code.
Comments should not paraphrase the code. This section covers two types of comments:
documentation comments and code comments.

2.2.1 DOCUMENTATION COMMENTS

Java programs can include special documentation comments in their source code. The javadoc tool
extracts these comments from the code and produces Web pages that document the code. This is the
preferred way to create documentation for Java code. Documentation comments should be used to

comment classes, interfaces, methods, and fields.

Example 2.2a - Documentation Comment

/**

* Description of the object being conmmented. The description may

* span multiple lines.

* @ags appropriate to the type of block are placed here, one per |ine.
* (see the Java Language Specification, section 18.4 for a list of tags)
**/

General guidelines for using documentation comments are as follows:
a. A documentation comment should precede the code that it refers to.

b. Use the HTML tags "<PRE>" and "</PRE>" when including sample code in a documentation
comment. The tags ensure that the code is displayed correctly in the javadoc generated files.

[3]

c. Other HTML tags, such as "" and "" for boldface, may be used. However, the heading
tags ("<H1>", "<H2>", etc.) and horizontal line tag ("<HR>") are reserved for use by javadoc
and should not be used.

d. The first sentence of each documentation comment should be a summary sentence,
containing a concise but complete description of the declared entity. This sentence ends at
the first period that is followed by a blank, tab, or line terminator, or at the first tagline. [3].
The javadoc parser will include only the summary sentence in the summary section of the
document, but will include the entire comment in the details section.

e. Remember that white space formatting is ignored by the parser. Even if you have paragraphs

separated by blank lines in your comment, it will appear as one big paragraph in the HTML
output. Use the HTML tags "<P>" and "
" to separate sections of your comment.

2-6

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

2.2.2 CODE COMMENTS

2221 Code Comment Formats

There are several different formats of code comments:
a. Boxed Comments - Used for standard format comment blocks (see Section 4).

Example 2.2b - Boxed Comment

!/ This code was devel oped by NASA, Goddard Space Flight Center, Code
/ XXX for the Project Nane Project

b. Section Separators - Used to visually separate portions of a program or comment
block.

Example 2.2c - Section Separator

c. Block comments - Used at the beginning of a section of code as a narrative
description of that portion of the code.

Example 2.2d - Block Comment

/1 This is a block conment. The comrent should be witten in full
/1 sentences with correct punctuation, etc. Use this form of conment
/1 when nore than one sentence is required

d. In-Line Comments - Written on the same line as the code or data definition they
describe. These comments should be tabbed over far enough to separate them from
the code statements. In addition, if more than one short comment appears in a block
of code or data definition, they should all be started from the same tab position.

Example 2.2e - In-Line Comments

Mat ri x33 transformationMatrix; // matrix converting from GCl to BCS
i nt numvodel s; /1 nunmber of attitude nodels used
String nane; /1 nanme of current attitude nodel

2-7

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

2.2.2.2 General Guidelines

General guidelines for using code comments are as follows:

a. Declare each internal (local) variable on a separate line followed by an in-line
comment if necessary. Loop indices and other such insignificant variables are an
exception to this rule. They can all be listed on the same line with one comment.

b. Comments should describe blocks of code rather than individual lines of code
(see Example 2.2d).

c. Comments should be written at the same level of indentation as the code they
describe (see Example 2.29).

Example 2.2f - Block Comment vs. In-line Comment
preferred style:

Mai n sequence: get and process all user requests

~~
~~

\{Nhile (!isFinished())

i nquire();
process();

not recommended:

whil e (!isFinished()) /1 Main sequence:
/1
i nquire(); /1l Get user request
process(); /1 And carry it out
/1 As |l ong as possible

Example 2.2g - Comment Indentation

~~
~~

Mai n sequence: get and process all user requests

while (!isFinished())
{ i nquire();
i f (requestCode != 0)
/1 1f the request code is non-zero, then perform

/1 internediate processing to generate request infornmation
gener at eRequest | nf o(r equest Code) ;

process();

2-8

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

2.3

231

STANDARD NAMING CONVENTIONS

NAME FORMATS

Classes and Interfaces: Capitalize the first letter of each word.
Example: CustomerSchedule

Variables: Capitalize the first letter of each word except the first word.
Example: numberOfStars

Member Fields: Begin with the letter “f”, then conform to the variable format.
Example: fTimeOfDay

Methods: Capitalize the first letter of each word except the first word.
Example: getValue

Static Members of a Class: Begin with the letter “s”, then conform to variable format.
Example: sTimeOfDay

Constants: All uppercase, with words separated by underscore

characters.

Example: MIN_VALUE

Names Containing Acronyms: Follow the above conventions.
Example: Nasaldentifier (class name)

Names Containing Proper Nouns: Follow the above conventions.
Example: kennedyCode (variable name)

2.3.2

NAME CONVENTIONS

To improve consistency with the Java API and to provide support for JavaBeans, names and verb
phrases should also obey the following conventions:

a.

Methods to get and set an attribute should be named getX and setX, where X is the
attribute.
Examples: getFont and setFont of class java.awt.Component

A method that tests a boolean condition should be named isX where X is the condition to test.
Example: isEnabled of class java.awt.Component

A method that converts its object to a new format should be named toX where X is the new
format.
Example: toString of class java.lang.Object

Subclasses of java.util.EventObject should be named XEvent, where X is the event name.
Example: ButtonPressEvent

Subclasses of java.util.EventListener should be named XListener, where X is the event type
that the listener is interested in, minus the "Event" suffix.
Example: ButtonPressListener, where ButtonPressEvent is the event of interest

Event sources that allow registration of event listeners should name their registration
methods addX and removeX, where X is the event listener type.

2-9

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

Examples: addButtonPressListener, removeButtonPressListener

233

SHORT NAMES

Some standard short names for code elements are listed in the table below. While use of these
names is acceptable if their meaning is clear, more explicit names are recommended.

Standard Short Names:

c

characters

i,j, kK indices

m, n counters

0
e

S

234

objects
exceptions

strings

GENERAL GUIDELINES FOR VARIABLE NAMES

The following guidelines should be adhered to before writing code:

a.

b.

2.35

Names should be nouns or noun phrases.

Use meaningful names. Longer names improve readability and clarity.
Avoid the use of underscores, except in constants.

Avoid abbreviations. However, if required, follow a uniform scheme.

Names should differ by at least two characters. For example, "systst" and "sysstst" are
easily confused.

Do not rely on letter case to make a name unique.

Avoid using gratuitous modifiers (e.g., the and my) as the first word of a name.

In separate functions, do not use identical variable names for variables that do not have
identical meaning. Using the same variable name if the meaning of two variables are

only similar or coincidental can cause confusion to the reader.

PACKAGE NAMING CONVENTIONS

The Java Language Specification (see Section 1.4) suggests a standard convention for naming
packages. It is strongly recommended that package names adhere to this standard to avoid
naming conflicts.

a. The first components of a package name should be the components of the
organization's domain name in reverse order, with the first component in all
uppercase. (e.g., GOV.nasa.gsfc)

b. If classes belong to a specific project then append a component name corresponding to
the name of the project. (e.g., GOV.nasa.gsfc.workplace)

2-10

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

c. If classes are intended to be used across multiple projects, then append a “reuse”
component to their package name. (e.g., GOV.nasa.gsfc.reuse)

2-11

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

2.4 LITERALS
Literals should adhere to the following guidelines:

a. Floating point numbers should have at least one number on each side of the
decimal point:

0.5 5.0 1. 0e+36

b. Hexadecimal numbers should use Ox (zero, lower-case x) and upper case A-F:

0x123 OxFFF

2-12

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

SECTION 3
FILE ORGANIZATION

This section discusses the organization of Java source code. It describes how to package related
source files together and how to organize code within individual source files.

3.1 PACKAGES

A Java program consists of one or more Java classes that are normally stored in source files.
Packages organize the source files into groups of related files. All source files, and thus all
classes, belong to a package. For simple programs a package may not be specified. In this
case, classes become members of the unnamed package.

Files within a package should be organized using a directory structure where package
components are represented as subdirectories. Organize files by class with one class
definition per file. The file should have the exact name as the class/interface, plus a ".java"
extension.

3.2 README FILE

A README.html file should be used to explain what the program does and how it is
organized and to document issues for the program as a whole. For example, a README.html
file might include the following:

a. How to build and run the software (i.e., version of Java needed, additional
required packages).

b. How to configure the environment.

c. Pointers to additional documentation. If providing source, include a link to the
Javadoc.

3.3 FILE PROLOG

This prolog should appear at the beginning of all source files. The format should also be used
for other files related to the program, such as scripts and Makefiles, although the comment
indicator (‘//') must be changed.

Example 3.3a - File Prolog

=== File Prol og
Thi s code was devel oped by NASA, Goddard Space Flight Center, Code XXX
for the Project Nane project.

S o] B =T R e R
Anyt hi ng rel evant about the itens in this file, including docunent
ref erences, assunptions, constraints, restrictions, abnormal termnination
conditions, etc.

Dat e Aut hor Ref erence
Description

Dat e Aut hor Ref erence
Description

Il
I
Il
I
Il
I
Il
I
Il
[1--- Development Hi StoOry --------m oo e oo
Il
I
Il
I
Il
I
/1 Etc.

I

3-1

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

L T T Lo B e i

This software is property of the National Aeronautics and Space

Adm ni stration. Unauthorized use or duplication of this software is

strictly prohibited. Authorized users are subject to the follow ng

restrictions:

* Nei ther the author, their corporation, nor NASA is responsible for
any consequence of the use of this software.

* The origin of this software nmust not be nmisrepresented either by
explicit claimor by onission.
Altered versions of this software must be plainly marked as such.
This notice may not be renoved or altered.

—~— e e e e e~~~
~ e e e e e e e e

=== End File Prol og

3.4 ORDER OF CONTENTS

The items contained within a source file should be presented in the following order:

File prolog (see 3.3)

Package decl aration

I mport statements (core packages)

I mport statements (user-defined packages)
Class/interface prol og

Class/interface definition

3.5 CLASSES AND INTERFACES

Each class or interface shall be preceded by a documentation comment of the following
format. The @deprecated and @see lines are to be used only if applicable.

Example 3.5a - Classes and Interfaces

/**

* Description of the class. Include usage instructions. Enbed code fragnents
* in <PRE></ PRE> tags.

*

* <P>This code was devel oped by NASA, Goddard Space Flight Center, Code XXX
* for the Project Name project.

*

* @ersion dat e of submi ssion

* @ut hor aut hor’ s nane

*

* @leprecated (add this if the class is superceded by a new cl ass)

* @ee name of a related class or interface, fully qualified

* @ee r el at edd assNanme#net hodl nCl ass

* @Bee URL (for docunent references)

**/

3-2

Software and Automation Systems Branch Java Style Guide, Version 1.0

3.6 METHODS

DSTL-97-002

Keep methods simple. Divide complex tasks into multiple methods. Precede each method
with a documentation comment of the following format. The @deprecated and @see lines are

to be used only if applicable.

Example 3.6a - Methods

/**

* Describe the nethod: what it does, its purpose, effects, usage instructions, and
* inplementation notes.

*

* @aram ar gurrent Nane description of argunent

* @aram ar gurrent Nane description of argunent

(etc.)

*

* @eturn description of return value (omt if returns void)

*

* @xception excepti onNane description of exception that nethod throws
* @xception excepti onName description of exception that method throws
. (etc.)

* @leprecat ed (add this if the nethod is superceded by a new net hod)

* @ee #ot her Met hodl nThi sCl ass

* @ee r el at edd assNanme#net hodl nCl ass

* @ee URL (for docunent references)

* %

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

3.7 TAGGED PARAGRAPHS

@version Tag

May be used in documentation comments for class and interface
declarations i.e.,

@version 493.9.1beta

@author Tag May be used in documentation comments for class and interface
declarations i.e.,
@author Jeremy Jones

@param Tag May be used in documentation comments for method and constructor

declarations i.e.,

@param file the file to be searched
@param pattern

the pattern to be matched during the search
@param count the number of lines to print for each match

@return Tag

May be used in documentation comments for declarations of methods
whose result type is not void i.e.,

@return the number of widgets that pass the quality test

@exception Tag

May be used in documentation comments for method and constructor
declarations i.e.,

@exception IndexOutOfBoundsException
the matrix is too large

@exception UnflangedWidgetException the widget does not
have a flange, or its flange has size zero

@exception java.io.FileNotFoundException the file
does not exist

@deprecated Tag

Class/method is superceded by another class/method.

@see Tag

May be used in any documentation comment to indicate a cross-reference
to a class, interface, method, constructor, field, or URL i.e.,.

@see java.lang.String

@see String

@see java.io.lnputStream;

@see String#equals

@see java.lang.Object#wait(int)

@see java.io.RandomAccessFile#RandomAccessFile(File, String)
@see Character#MAX_RADIX

@see Java Spec

34

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

3.8 SAMPLE SOURCE FILE

Example 3.8a - Sample Source File

/=== File Prol og

/1 This code was devel oped for NASA, CGoddard Space Flight Center, Code 520
/1 for the Instrunent Renote Control (IRC) project.

/1

L - - NOLES - - - - oo oo oo oo oo
/1 This class requires JDK version 1.1 or l|ater.

/1

[1--- Development Hi StoOry --------mmmm e
/1

/1 11/01/96 K. Canpbel | / 522

/1

I Initial version.

/1

/1 02/01/97 J. Jones/522

/1

I Converted class to conply with JavaBeans conventions.

I Now uses serialization to send/receive event objects.

11

Y L Tl T R e T R
/1 This software is property of the National Aeronautics and Space

/1 Administration. Unauthorized use or duplication of this software is

/1 strictly prohibited. Authorized users are subject to the follow ng

/1 restrictions:

/= Nei t her the author, their corporation, nor NASA is responsible for
I any consequence of the use of this software.

I * The origin of this software rmust not be nmisrepresented either by

I explicit claimor by omission.

I Altered versions of this software must be plainly marked as such.
/= This notice may not be renoved or altered.

11

/=== End File Prol og

package GOV. nasa. gsfc.workpl ace;

i nport java. net. Socket;

i mport java. net. UnknownHost Excepti on;
i mport java.i o.Bufferedl nput Stream

i mport java.io.BufferedCQutput Stream
i mport java.io.Qojectlnput Stream

i mport java.io.Qbject Qut put Stream

i mport java.io.| OException;

/**

* This class represents a connection between two Workpl ace nenbers.

* |t is used to send event objects to a renote nenber. It is also used
* to receive an event object froma renmpte nenber. Wen that occurs,

* TCPConnection will instruct the event object to call the appropriate
* Listener nmethod on the TCPConnection's parent object.

*

* <P>This code was devel oped for NASA, CGoddard Space Flight Center, Code 520
* for the Instrunent Renbte Control (IRC) project.

*

* @ersion 02/ 01/ 97

* @ut hor J. Jones

*

* @Bee GOV. nasa. gsf c. wor kpl ace. Connecti on

**/

public class TCPConnection extends Thread inpl ements Connection

{

private static final String BEG N _SYNC = " _WP_EVENT_BEG N_";

private static final String END SYNC = "_WP_EVENT_END ";

private Socket f Socket ; /1 the actual socket connection
private Workpl acelLi st ener f Parent; /1 notify when data is received
private hjectlnputStream fln; /] input object stream

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

private ObjectQutputStream fQut; /1 output object stream

/**

* Creates a TCPConnection froman existing Socket. The socket already
* has an open connection, so TCPConnection i mmediately starts

* jts thread and waits for data.

*

* @aram s Exi sting socket connection

* @aram parent Notify this object when data is received

*

**/

publ i ¢ TCPConnecti on(Socket s, Wrkpl aceli stener parent)

f Socket = s;
f Parent = parent;
get | OSt reans() ;

start();
}
/**
* Creates a TCPConnection given the address of the renote nenber.
* |t then attenpts to connect to the renote nenber.
*
* @aram address (host, port) address of the renote nenber
* @aram parent Notify this object when data is received
*
**/

publ i ¢ TCPConnecti on(TCPAddr ess address, Workpl acelLi st ener parent)
f Parent = parent;
try
{
open(addr ess) ;

catch (1 CException e)

{
}
}
/**
* Creates an enpty TCPConnection. open(address) nust be called
* later toinitialize a connection to a renote nenber.
*
* @aram parent Notify this object when data is received
*
**/

publ i ¢ TCPConnecti on(Wr kpl acelLi st ener parent)

f Parent = parent;

*

Attenpts to establish a connection to a renpte host and port.
If successful, starts the TCPConnection thread and waits for data.

/

@aram address (host, port) address of the renote nenber

* %k ok Ok F F

@xception | OExcepti on an error occurred in opening the connection
**/
public void open(Address address) throws | OException

System out . printl n("Opening connection to "
+ ((TCPAddr ess) addr ess) . get Host ()

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

+ ":" + ((TCPAddress)address).getPort());
f Socket = new Socket (((TCPAddr ess) addr ess) . get Host (),
((TCPAddr ess) address).getPort());
cat ch (UnknownHost Excepti on e)

System out . printl n("Unknown host.");
f Socket = null;

}
catch (I OException e)

f Socket = null;

}
if (fSocket == null)
Systemout.printin("Error in opening connection.");
throw (new | OException());
}

System out. println("Apparently connected.");
get | OSt reans() ;

start();

/**

* Closes the connection to the renote object and stops the thread.
**/

public void close()

stop();
try
f Socket . cl ose();

%at ch (1 CException e)
}

/**

* Attenpts to get I/O streanms for the existing socket connection.
**/

private void getl CStreans()

try
fln = new Qbj ect | nput Strean(new Buff eredl nput St ream
(f Socket. getlnputStream()));
fQut = new Obj ect Qut put St ream(new Buf f er edCut put St r eam
(f Socket.getQut put Stream()));
}
catch (1 OException e)

Systemout.printin("Error in getting streans.");

/**

* This routine waits for inconmng data fromthe socket connection.

3-7

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

* |t reads event objects fromthe input streamand notifies the
* parent |istener.

**/

public void run()
while (true)
{

try
{
/1 Read the begin sync

String beginSync = fln.readUTF();

/1 Don't try to read object if incorrect begin sync
i f (begi nSync. equal s(BEA N_SYNC))

{
try
t System out. println("Receiving incomng event...");
Wor kpl aceEvent event = (Workpl aceEvent) fln.readObject();
/1 Notify the parent |istener
event. notifyLi stener(fParent);
Cl\t ch (d assNot FoundException e)
Systemout.println("Unable to create instance of event");
}

/1 Read the end sync
String endSync = fln.readUTF();

/1 Stop if incorrect end sync
if (!endSync. equal s(END_SYNC))

throw (new | OException("Unable to read Wrkplace end sync

t oken"));
) }
catch (1 CException e)
Systemout.println("l O Exception occurred in reading inconing
event");
stop();
}
}
/**

* Wites an event object to the output stream
*

* @aram event object to wite
*
**/
public synchroni zed voi d send(Wor kpl aceEvent event)
try
{

Systemout.println("Sending an event: " + event.toString());

/1 Wite begin sync string
fout.witeUTF(BEGA N_SYNC):

/1 Wite the serialized object to the stream
fQut.witelhject(event);

/1 Wite end sync string
fQut. writeUTF(END SYNC):

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

* % 3k ok Ok ok

*

**/

faut.flush();
}
catch (1 OCException e)

Systemout.printin("Wite failed.");

Returns the current state of the connection as a ConnectionState
object. Note: the current inplenentation of this nmethod sinply
returns a default ConnectionState object.

@eturn obj ect representing the state of the current connection

public ConnectionState getState()

return new ConnectionState();

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

SECTION 4
USE OF LANGUAGE CONSTRUCTS

This section contains rules that programmers should follow when using various Java
language features.

41 IMPORT

a. Only import classes and interfaces that are actually being used rather than using
* forms of import.

b. Group related imports together with core packages first followed by user-defined
packages.

4.2 METHODS

a. A single return statement at the end of a function creates a single, known
point that is passed through at the termination of function execution. Multiple
returns in a single unit should be avoided as much as possible, unless the use of
a single return would cause the code to be difficult to understand or maintain.

b. In the case of a thrown exception, the method should attempt to leave a
consistent state before throwing the exception. (This includes making objects
available for garbage collection and setting appropriate state variables, as
necessary.)

4.3 VARIABLES
a. Local variables should be declared at the level at which they are needed. For
example, if a variable is used throughout the procedure, it should be declared at
the beginning of the procedure. If a variable is used only in a computational
block, it may be declared at the top of that block. Local variables should be
initialized when they are declared.

b. Do not use internal variable declarations that override declarations at higher
levels; these are known as hidden variables.

c. Place fields at the beginning of the class, in order of accessibility (e.g., public,
protected, package, private).

d. Never declare fields as public.

e. Always explicitly initialize variables when declaring them. Do not rely on
implicit initializers.

f. Minimize the use of static fields, except for static final constants.

g. Prefer the Type[] arrayNane form of array declaration instead of the Type
arrayNane[] form.

h. Assign nul | to any object references that are no longer being used. This enables
garbage collection.

4-1

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

4.4 LITERALS

a. Use named constants instead of embedded literals, except in trivial cases.

4.5 TYPE CONVERSIONS AND CASTS

a. Type conversions occur by default when different primitive types are mixed in an
arithmetic expression across an assignment operator. Use the cast operator to
make type conversions explicit rather than implicit.

b. Avoid casting an object to its base type. It is unnecessary and can create
confusion.

4.6 OPERATORS AND EXPRESSIONS

a. Use side-effects within expressions sparingly. No more than one operator with a
side-effect (=, ++, --) should appear within an expression. It is easy to
misunderstand the rules for compilation and get side-effects compiled in the
wrong order e.g.,

if ((a<b) & (c == d++))

d will “only” be incremented if a is less than b.

Avoid using side-effect operators within relational expressions. Even if the
operators do what the author intended, subsequent reusers may question what

the desired side-effect was.

b. Avoid the use of embedded assignments. Example 4.7a illustrates the relative
readability of embedded assignments.

Example 4.7a - Embedded Assignment
not recommended:

if ((total = getTotal ()) == 10)

System out. println("goal achieved");

recommended:

total = getTotal ();
if (total == 10)

System out. println("goal achieved");

4-2

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

c. In Java, conditional expressions allow evaluation of expressions and assignment of
results in a shorthand way. While some conditional expressions seem very natural,
others do not, and their use should be avoided. The following expression, for example, is
not as readable as the one above and would not be as easy to maintain. It should be
broken into individual statements.

Example 4.8a - Complex Conditional Expression

not recommended

c=(a==b) 2d+f(a) : f(b) - d:

4.7 CONTROL FLOW STATEMENTS

a. For readability, use the following format for switch statements:

swi tch (expression)

case aaa:
statement [s]
br eak;

case bbb: /1 fall through
case ccc:

statenment|[s]

br eak;

defaul t:
statenment|[s]
br eak;

b. Note that the fall-through feature of the Java switch statement should be commented
for future maintenance.

c. All switch statements should have a default case. The default case should be last and
does not require a break, but it is a good idea to put one there anyway for consistency.

d. Avoid the use of labels.

e. Avoid the use of break and continue except when using breaks in switch statements.
4.8 THREADS

a. If amethod invokes wai t , document that fact in the method prolog.

b. When a wai t finishes, it does not know if the condition it was waiting for is true or not,
therefore always embed wai t statements in while loops that re-wait if the condition is
false.

4-3

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

SECTION 5
TIPS AND TECHNIQUES

This section contains various suggestions that can be used to improve the quality of Java

code.

5.1

5.2

5.3

CLASSES

Consider whether a class should implement the Cl oneabl e and/or Seri alizabl e
interfaces.

If a class implements Cl oneabl e, ensure that its implementation of clone() performs a
deep copy.

Consider defining a default (no-argument) constructor so that instances can be created
via Class.newlnstance() and Beans.instantiate().

Use interfaces to separate functionality from implementation.

1. Code written in terms of the abstract (interface) type does not need to change when
the implementation class changes.

2. Different implementations of the interface can be used, even at the same time.

3. Other (unforeseen) classes can implement the interface if it becomes necessary, while
they are only allowed to inherit from a single class.

4. The interface provides a distinct location where the behavior is defined.

A class that overrides Object.equals() should also override Object.hashCode(), and vice-
versa. This allows objects of the class to be properly inserted into container objects.

THREADS

Do not depend upon a particular implementation of threads since the virtual machine
specification does not specify how threads will be scheduled.

In order to promote reuse, always assume that a method may be called by multiple

threads. Synchronization should be used on all methods that change or read the internal
state of the object.

PORTABILITY

Consider detailed optimizations only on computers where they prove necessary.
Optimized code is often obscure. Optimizations for one computer may produce worse code
on another. Document code that is obscure due to performance optimizations and isolate
the optimizations as much as possible.

Native methods are inherently nonportable. Organize source files so that the computer-
independent code and the computer-dependent code are in separate classes. If the
program is moved to a new computer, it will be clear which classes need to be changed for
the new platform.

5-1

Software and Automation Systems Branch Java Style Guide, Version 1.0 DSTL-97-002

54 PERFORMANCE

a. When performance is important, as in real-time systems, use techniques to enhance
performance. If the code becomes "tricky" (i.e., possibly unclear), add comments to aid the
reader.

b. Use buffered I/0O streams to improve the performance of stream reads and writes.

c. Enable compiler optimizations when compiling performance-critical classes. This will
enable inlining of static, final and private methods.

5-2

